Superficial siderosis of the central nervous system: An unusual cause for headache and hearing loss

Sevki SAHIN MD, Sunay AGILKAYA MD, Sibel KARSIDAG MD

Department of Neurology, Faculty of Medicine, Maltepe University, Istanbul, Turkey.

Abstract

Superficial siderosis of the central nervous system (SSCN) is a very rare disorder caused by deposition of haemosiderin in the superficial and subpial layers of the central nervous system due to repeated chronic subarachnoid or intraventricular haemorrhage. The clinical syndrome of SSCN consists of sensorineural hearing loss, progressive ataxia and spasticity. A 52 year-old woman who has a history of chronic progressive hearing loss, severe headache and gait instability for one year is presented. The neurological examination revealed bilateral sensorineural hearing loss, cerebellar ataxia and mild spasticity of the lower extremities. Brain MRI showed classical superficial siderosis in the form of hyposignal intensity along the leptomeninges. The prominent sites of hemosiderin deposition in this case were cerebellar vermis, around the brain stem and whole spinal cord surface. Cerebrospinal fluid findings confirmed chronic subarachnoid hemorrhage but bleeding site could not be demonstrated by cerebral angiography. This case report draws attention to this rare complication of chronic subarachnoid hemorrhage, which can be recognized early by its clinical triad and MRI findings.

INTRODUCTION

Superficial siderosis of the central nervous system (SSCN) is a rare condition characterized by deposition of hemosiderin on the cerebellum (especially the vermis), basal frontal lobe and olfactory bulbs, temporal cortex, brainstem and cranial nerves (especially VIII), spinal cord and nerve roots.1 Deposition of free iron and hemosiderin in pial and subpial structures leads to intoxication of the central nervous system (CNS) and represents the pathophysiological mechanism of superficial siderosis. Hypointensity of the marginal zones of the central nervous system on T2 weighted MR images indicates an iron-induced susceptibility effect and seems pathognomonic for superficial siderosis.² This deposition eventually results in destruction and demyelination within the central nervous system, leading to the cardinal clinical findings of superficial siderosis: hearing loss, ataxia, and myelopathy.^{3,4}

The deposition of hemosiderin is due to repeated chronic subarachnoid or intraventricular bleeding most commonly secondary to repeated hemorrhages from tumors (especially ependymomas) and vascular malformations.⁵ In most cases, no source of bleeding is found.⁶ Treatment of superficial siderosis is focused around treating the source of bleeding.⁷ This is the report of a patient with SSCN where no cause was found, presenting with headache, deafness and gait ataxia.

CASE REPORT

A 52-year-old previously healthly woman presented with a one year history of mild progressive bilateral deafness, throbbing headache predominantly in frontotemporal regions and gait ataxia. She experienced headache accompanied by nausea, photophobia and phonophobia and were not relieved by analgesics and ergotamines. There was no history of systemic hypertension and craniospinal injury or operation of the brain and spinal cord. She had never experienced any episode of severe headache, nausea and vomiting which would indicate acute subarachnoid hemorrhage. No history of diseases or medications which would cause bleeding tendency was noted. Family history was unremarkable for neurodegenerative diseases. General physical examination was unremarkable. Neurological examination revealed a healthy, alert and cooperative patient with no stiff neck. Mental status examination showed no evidence of cognitive impairment. The Mini-Mental State Exam score was 28/30. The muscle power was normal. Both lower limbs were spastic with brisk deep tendon reflexes and bilateral extensor plantar responses. There was mild dysmetry and dysdiadokokinesia both sides. She could not perform tandem gait due to instability.

Audiogram revealed sensorineural hearing loss of both ears, which was more on the left and high tone frequency loss was more prominent

Address correspondence to: Sevki Sahin MD, Baglarbasi mah. Gumus sok. No: 5/6, 3483 Maltepe / Istanbul-TURKEY. Phone:+90-216-3999750, Fax: +90-216-3709719, e-mail: drsahin@gmail.com

than lower tone frequency loss. CT brain scan with contrast was unremarkable. Brain MRI particularly with fluid attenuated inversion recovery (FLAIR) images showed high signal intensity in the cerebellar fissures, basal cisterns, Sylvian fissures and brainstem (Figure 1). MRI of the spine showed diffuse hypointensity at the surface of the whole cord, with no intra or extramedullary lesion (Figure 2). Lumbar puncture revealed a normal open pressure of 130 mm H₂O and the cerebrospinal fluid (CSF) was xanthochromic. CSF analysis revealed 4,200 red blood cells/ml and protein of 60 mg/dl. No organisms were detected by gram stain, Indian ink preparation and culture. VDRL was negative. No malignant cell or siderophage were detected from cytologic examination. CSF iron and ferritin were 4 ug/dl and 89.6 ng/ml respectively. Other CSF and plasma biochemistry results are listed in Table 1. Cerebral digital subtraction angiography (DSA) was normal.

The patient was diagnosed as idiopathic SSCN. She was given supportive treatment including 500 mg/day paracetamol in severe headache attacks, and 2,400 mg/per day piracetam for gait disturbance. The headache gradually improved over the subsequent year, and the neurological status remained stable.

DISCUSSION

SSCN was first described in 1908. There were several publications on its pathogenesis and clinical manifestations during the 1960s.^{8,9} Nevertheless, the origin of SSCN remains undetermined in most cases. Highly vascular spinal tumours, CNS vascular abnormalities and posterior fossa surgical procedure are the most commonly identified sources of chronic bleeding.^{10,11} A past history of trauma can be elicited in some patients and prior intradural surgery may be a further risk factor. The presence of a fluid-filled collection in the spinal canal is a common finding on MRI in these patients. With longitudinally extensive cavities, a dynamic CT myelogram may help localize the defect and direct the site of laminectomy.⁶ As a fluid-filled cavity can result in spinal medullary compression, laminectomy may be beneficial in selected patients. In operated patients, spinal medullary compression has been shown to resolve upon MRI scanning without reversing the clinical picture. For this reason, a history of trauma and surgery should be elicited in all patients.7 In our patient there was no history of trauma. As spinal MRI was normal, CT myelogram was not performed in our case.

Some of the reported etiological factors identified in cases of SSCN are shown in Table 2. Since Brain CT scan was unmarkeble, brain MRI was performed in this case. Brain MRI has been shown to be superior to CT in the determination of the underlying etiology in previous studies.^{9,12,16} MRI showed symmetrical rims of low signal intensity in the upper folia of the cerebellar hemispheres, the Sylvian and other fissures indicating hemosiderin deposits.^{5,7} This deposition results in the destruction of myelin and is considered a possible cause of myleopathy. In some cases of SSCN, pre-existing spinal surgery or trauma are considered as another possible cause for myleopathy.⁶

Figure 1. A. Sagittal T2-weighted magnetic resonance (MR) image shows diffuse hypointensities around Sylvian fissure and the cerebellar tentorium. B. Axial T2 weighted images show a hypointense rim surrounding the mesencephelon and C. pons.

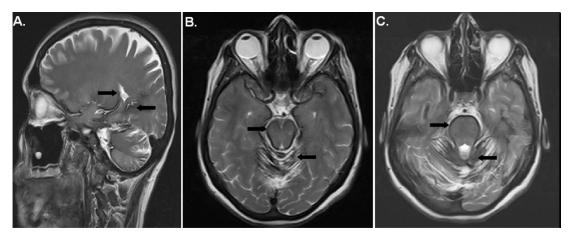


Figure 2. Sagittal T2-weighted MR image brainstem and spinal cord. Hypointense hemosiderin staining is seen around A. quadrigeminal cistern, pons and cervical B. thoracal C. lomber spinal cord.

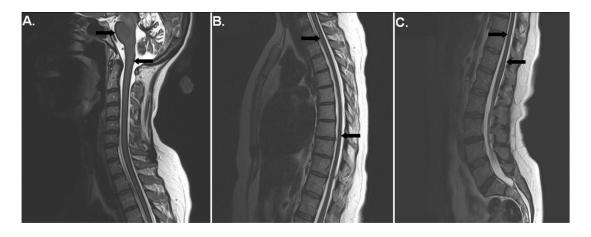


Table 1 Cerebrospinal fluid (CSF) and plasma findings of the patient

	CSF	Normal values*	Plasma	Normal values*
Glucose in mg/dL	55	50-80	94	70–110
Protein in mg/dL	60	15-45	7.3	6.4-8.2
Sodium in mmol/L	144	136–145	138	136–145
Potassium in mmol/L	2.9	2.6–3.0	3.6	3.5–5.1
Iron in microg/dL	4	23–52	80	35–150
Ferritin in ng/mL	89.6	2.73-3.41	130.2	20–250

*Biochemistry laboratory of School of Medicine, Maltepe University.

Lumbar puncture revealed a mildly increased blood cell count and the CSF ferritin level was high (89.6 ng/mL, normal values = 2.73-3.41ng/mL) supporting a diagnosis of leptomeningeal siderosis. Audiogram revealed sensorineural hearing loss of both ears in our case. Sometimes, a hemosiderin deposit of the VIIIth cranial nerve can be found. MRI using axial three-dimensional constructive interference in the steady state (CISS) images are a particularly useful technique for demostrating this.^{3,4,17,21} Hemosiderin deposits on other cranial nerves, including cranial nerves I, II, V, VII, and X, have also been reported.²² The VIIIth cranial nerve is particularly vulnerable to hemosiderin deposition, often resulting in bilateral sensorineural hearing loss.^{3,22}

In most cases treatment is limited to being

symptomatic. In our case this including paracetamol for headaches and a trial of piracetam, the latter having no clear proven benefit. The only definite treatment for SSCN is in patients with an identifiable scource of bleeding.^{1,7} Iron chelating agents have not been proven to have any beneficial effect.¹⁴ In order to reduce the oxidative toxic effect of the heme-iron complex, selegiline (monoamine oxidase B inhibitor) and vitamin C have been administered without a clealry discernable benefit.^{3,14} More therapeutic studies are clearly needed.

To conclude, headache combined with sensorineural hearing loss, may represent the first symptoms of SSCN which can be easily detected by brain MRI. Only rarely can a scource of bleeding be identified.

 Table 2 Etiological factors of SSCN in the literature.

Authors	Etiological Factors		
Haroun <i>et al.</i> 2000 ¹²	Cerebral arteriovenous malformation		
Li <i>et al</i> . 2001 ¹³ , Leussink <i>et al</i> . 2003 ¹⁴	Cavernous malformations		
Yoshida et al. 2002 ¹⁵	Spinal teratoma		
Kitis <i>et al.</i> 2003 ¹⁶	After endoscopic third ventriculostomy		
Kitis <i>et al.</i> 2003 ¹⁶	Pituitary macroadenoma		
McCarron <i>et al.</i> 2003 ¹¹	After posterior fossa surgery		
Jin <i>et al.</i> 2004 ¹⁷	Familial leptomeningeal amyloidosis		
Kole <i>et al.</i> 2004 ⁵	Bleeding pseudomeningocele		
Messori <i>et al.</i> 2004 ⁹ , Kitis et al. 2003 ¹⁶	Spinal ependymoma		
Sakamoto <i>et al</i> . 2004 ¹⁸	After subtotal removal of pituitary adenoma		
Aquilina <i>et al.</i> 2005 ⁴	Cervical nerve root avulsion		
Cohen-Gadol et al. 2005 ²⁰	After spinal surgery		
Hino <i>et al.</i> 2005 ¹⁹	Meningeal melanocytoma		
Kumar <i>et al.</i> 2005 ⁷	Traumatic fluid-filled cavity on spinal cord		

REFERENCES

- Fearnley JM, Stevens JM, Rudge P. Superficial siderosis of the central nervous system. *Brain* 1995; 118:1051-66
- Willeit J, Aichner F, Felber S, *et al.* Superficial siderosis of the central nervous system: report of three cases and review of the literature. *J Neurol Sci* 1992; 111: 20-5.
- Phanthumchinda K, Likitcharoen Y, Lerdlum S. Idiopathic superficial siderosis: a case report. *J Med Assoc Thai* 2004; 87(7): 850–3.
- Aquilina K, Kumar R, Lu J, Rawluk D. Superficial siderosis of the central nervous system following cervical nerve root avulsion: the importance of early diagnosis and surgery. *Acta Neurochir (Wien)* 2005; 147: 291-7.
- Kole MK, Steven D, Kirk A, Lownie SP. Superficial siderosis of the central nervous system from a bleeding pseudomeningocele. Case illustration. J Neurosurg 2004; 100: 718.
- Kumar N, Cohen-Gadol AA, Wright RA, et al. Superficial siderosis. *Neurology* 2006; 66: 1144-52.
- Kumar N, Lindell EP, Wilden JA, Davis DH. Role of dynamic CT myelography in identifying the etiology of superficial siderosis. *Neurology* 2005; 65: 486-8.

- Bracchi M, Savoiardo M, Triulzi F, et al. Superficial siderosis of the CNS: MR diagnosis and clinical findings. AJNR Am J Neuroradiol 1993; 14: 227– 36.
- Messori A, Di Bella P, Herber N, Logullo F, Ruggiero M, Salvolini U. The importance of suspecting superficial siderosis of the central nervous system in clinical practice. *J Neurol Neurosurg Psychiatry* 2004; 75: 188-90.
- Offenbacher H, Fazekas F, Schmidt R, Kapeller P, Fazekas G. Superficial siderosis of the central nervous system. MRI findings and clinical significance. *Neuroradiology* 1996; 38: 551-6.
- McCarron MO, Flynn PA, Owens C, *et al.* Superficial siderosis of the central nervous system many years after neurosurgical procedures. *J Neurol Neurosurg Psychiatry* 2003; 74: 1326-8.
- Haroun RI, Li KW, Rigamonti D. Surgical resection of a cerebral arteriovenous malformation for treatment of superficial siderosis: Case report. *Surg Neurol* 2000; 53: 554-8.
- Li KW, Haroun RI, Clatterbuck RE, Murphy K, Rigamonti D. Superficial siderosis associated with multiple cavernous malformations: report of three cases. *Neurosurgery* 2001; 48: 1147–50.
- 14. Leussink VI, Flachenecker P, Brechtelsbauer D, et al. Superficial siderosis of the central nervous

system: pathogenetic heterogeneity and therapeutic approaches. *Acta Neurol Scand* 2003; 107(1): 54-61.

- 15. Yoshida S, Shidoh M, Matsumura S, Ohyama H. Superficial siderosis from spinal teratoma. *Lancet* 2002; 360: 1539.
- Kitis O, Calli C, Yurtseven T, Yunten N. Cerebral superficial siderosis: MRI findings. *Tani Girisim Radyol* 2003; 9: 36-40.
- 17. Jin K, Sato S, Takahashi T, Nakazaki H, et al. Familial leptomeningeal amyloidosis with a transthyretin variant Asp18Gly representing repeated subarachnoid haemorrhages with superficial siderosis. J Neurol Neurosurg Psychiatry 2004; 75(10): 1463-6.
- Sakamoto N, Murakami K, Matumoto K, *et al.* A case of superficial siderosis following subtotal removal of pituitary adenoma. *No Shinkei Geka* 2004; 32: 969-72.
- Hino K, Nagane M, Fujioka Y, Shiokawa Y. Meningeal Melanocytoma Associated with Ipsilateral Nevus of Ota Presenting as Intracerebral Hemorrhage: Case Report. *Neurosurgery* 2005; 56: E1376
- Cohen-Gadol AA, Atkinson PP, Krauss WE. Central nervous system superficial siderosis following spinal surgery. J Neurosurg Spine 2005; 2: 206-8.
- Lemmerling M, De Praeter G, Mollet P, et al. Secondary superficial siderosis of the central nervous system in a patient presenting with sensorineural hearing loss. *Neuroradiology* 1998; 40: 312–4.
- 22. Kwartler JA, De La Cruz A, Lo WM. Superficial siderosis of the central nervous system. *Ann Otol Rhinol Laryngol* 1991; 100: 249-50.